3,004 research outputs found

    Th2-driven, allergen-induced airway inflammation is reduced after treatment with anti-Tim-3 antibody in vivo

    Get PDF
    T cell immunoglobulin and mucin domain–containing molecule-3 (Tim-3) is a surface molecule that is preferentially expressed on activated Th1 cells in comparison to Th2 cells. Blockade of Tim-3 has been shown to enhance Th1-driven pathology in vivo, suggesting that blockade of Tim-3 may improve the development of Th2-associated responses such as allergy. To examine the effects of Tim-3 blockade on the Th2 response in vivo, we administered anti–Tim-3 antibody during pulmonary inflammation induced by transfer of ovalbumin (OVA)-reactive Th2 cells, and subsequent aerosol challenge with OVA. In this model, anti–Tim-3 antibody treatment before each airway challenge significantly reduced airway hyperreactivity, with a concomitant decrease in eosinophils and Th2 cells in the lung. We examined Th1 and Th2 cytokine levels in the lung after allergen challenge and found that pulmonary expression of the Th2 cytokine IL-5 was significantly reduced, whereas IFN-γ levels were significantly increased by anti–Tim-3 antibody treatment. Thus, blocking Tim-3 function has a beneficial effect during pulmonary inflammation by skewing the Th2 response toward that of a Th1 type, suggesting an important role for Tim-3 in the regulation of allergic disease

    Enhanced IL-2 in early life limits the development of TFH and protective antiviral immunity

    Get PDF
    T follicular helper cell (TFH)-dependent antibody responses are critical for long-term immunity. Antibody responses are diminished in early life, limiting long-term protective immunity and allowing prolonged or recurrent infection, which may be important for viral lung infections that are highly prevalent in infancy. In a murine model using respiratory syncytial virus (RSV), we show that TFH and the high-affinity antibody production they promote are vital for preventing disease on RSV reinfection. Following a secondary RSV infection, TFH-deficient mice had significantly exacerbated disease characterized by delayed viral clearance, increased weight loss, and immunopathology. TFH generation in early life was compromised by heightened IL-2 and STAT5 signaling in differentiating naive T cells. Neutralization of IL-2 during early-life RSV infection resulted in a TFH-dependent increase in antibody-mediated immunity and was sufficient to limit disease severity upon reinfection. These data demonstrate the importance of TFH in protection against recurrent RSV infection and highlight a mechanism by which this is suppressed in early life

    A critical role for IRF5 in regulating allergic airway inflammation

    Get PDF
    Interferon regulatory factor 5 (IRF5) is a key transcription factor involved in the control of the expression of pro-inflammatory cytokine and responses to infection, however its role in regulating pulmonary immune responses to allergen is unknown. We used genetic ablation, adenoviral vector-driven overexpression and adoptive transfer approaches to interrogate the role of IRF5 in pulmonary immunity and during challenge with the aero-allergen, house dust mite. Global IRF5 deficiency resulted in impaired lung function and extracellular matrix (ECM) deposition. IRF5 was also essential for effective responses to inhaled allergen, controlling airway hyper- responsiveness, mucus secretion and eosinophilic inflammation. Adoptive transfer of IRF5- deficient alveolar macrophages into the WT pulmonary milieu was sufficient to drive airway hyper-reactivity, at baseline or following antigen challenge. These data identify IRF5-expressing macrophages as a key component of the immune defence of the airways. Manipulation of IRF5 activity in the lung could therefore be a viable strategy for the redirection of pulmonary immune responses and thus, the treatment of lung disorders

    Quantum enhanced positioning and clock synchronization

    Get PDF
    A wide variety of positioning and ranging procedures are based on repeatedly sending electromagnetic pulses through space and measuring their time of arrival. This paper shows that quantum entanglement and squeezing can be employed to overcome the classical power/bandwidth limits on these procedures, enhancing their accuracy. Frequency entangled pulses could be used to construct quantum positioning systems (QPS), to perform clock synchronization, or to do ranging (quantum radar): all of these techniques exhibit a similar enhancement compared with analogous protocols that use classical light. Quantum entanglement and squeezing have been exploited in the context of interferometry, frequency measurements, lithography, and algorithms. Here, the problem of positioning a party (say Alice) with respect to a fixed array of reference points will be analyzed.Comment: 4 pages, 2 figures. Accepted for publication by Natur

    Intra-epithelial neutrophils in paediatric severe asthma are associated with better lung function

    Get PDF
    BACKGROUND: Neutrophils and IL-17A have been linked mechanistically in models of allergic airways disease and have been associated with asthma severity. However, their role in paediatric asthma is unknown. OBJECTIVES: To investigate the role of neutrophils and the IL-17A pathway in mediating paediatric severe therapy resistant asthma (STRA). METHODS: Children with STRA (n=51, age 12.6 (6 -16.3) years) and non-asthmatic controls (n=15, age 4.75 (1.6-16) years) underwent clinically indicated fiberoptic bronchoscopy, bronchoalveolar lavage (BAL), endobronchial brushings and biopsy. Neutrophils, IL-17A and IL-17RA expressing cells and levels of IL-17A and IL-22 were quantified in BAL and biopsies and related to clinical features. Primary bronchial epithelial cells (PBECs) were stimulated with IL-17A and/or IL-22, with and without Budesonide. RESULTS: Children with STRA had increased intra-epithelial neutrophils, which positively correlated with FEV1 %predicted (r=0.43, p=0.008). Neutrophil-high patients also had better symptom control, despite lower dose maintenance inhaled steroids. Submucosal neutrophils were not increased in STRA. Submucosal and epithelial IL-17A positive cells and BAL IL-17A and IL-22 levels were similar in STRA and controls. However, there were significantly more IL-17RA positive cells in the submucosa and epithelium in children with STRA compared to controls (p=0.001). Stimulation of PBECs with IL-17A enhanced mRNA expression of IL-17RA and increased release of IL-8, even in the presence of Budesonide. CONCLUSIONS: A proportion of children with STRA exhibit increased intra-epithelial airway neutrophilia that correlated with better lung function. STRA was additionally characterised by increased airway IL-17RA expression. These data suggest a potential beneficial rather than adverse role for neutrophils in paediatric severe asthma pathophysiology

    Pulmonary ORMDL3 is critical for induction of Alternaria -induced allergic airways disease

    Get PDF
    Genome-wide association studies have identified the ORM (yeast)-like protein isoform 3 (ORMDL3) gene locus on human chromosome 17q to be a highly significant risk factor for childhood-onset asthma. Objective We sought to investigate in vivo the functional role of ORMDL3 in disease inception. Methods An Ormdl3-deficient mouse was generated and the role of ORMDL3 in the generation of allergic airways disease to the fungal aeroallergen Alternaria alternata was determined. An adeno-associated viral vector was also used to reconstitute ORMDL3 expression in airway epithelial cells of Ormdl3 knockout mice. Results Ormdl3 knockout mice were found to be protected from developing allergic airways disease and showed a marked decrease in pathophysiology, including lung function and airway eosinophilia induced by Alternaria. Alternaria is a potent inducer of cellular stress and the unfolded protein response, and ORMDL3 was found to play a critical role in driving the activating transcription factor 6–mediated arm of this response through Xbp1 and downstream activation of the endoplasmic reticulum–associated degradation pathway. In addition, ORMDL3 mediated uric acid release, another marker of cellular stress. In the knockout mice, reconstitution of Ormdl3 transcript levels specifically in the bronchial epithelium resulted in reinstatement of susceptibility to fungal allergen–induced allergic airways disease. Conclusions This study demonstrates that ORMDL3, an asthma susceptibility gene identified by genome-wide association studies, contributes to key pathways that promote changes in airway physiology during allergic immune responses

    Endothelin-1 directs airway remodeling and hyper-reactivity in a murine asthma model

    No full text
    BACKGROUND: The current paradigm describing asthma pathogenesis recognizes the central role of abnormal epithelial function in the generation and maintenance of the disease. However, the mechanisms responsible for the initiation of airway remodeling, which contributes to decreased lung function, remain elusive. Therefore, we aimed to determine the role of altered pulmonary gene expression in disease inception and identify proremodeling mediators. METHODS: Using an adenoviral vector, we generated mice overexpressing smad2, a TGF-β and activin A signaling molecule, in the lung. Animals were exposed to intranasal ovalbumin (OVA) without systemic sensitization. RESULTS: Control mice exposed to inhaled OVA showed no evidence of pulmonary inflammation, indices of remodeling, or airway hyper-reactivity. In contrast, local smad2 overexpression provoked airway hyper-reactivity in OVA-treated mice, concomitant with increased airway smooth muscle mass and peribronchial collagen deposition. Pulmonary eosinophilic inflammation was not evident, and there was no change in serum IgE or IgG1 levels. The profound remodeling changes were not mediated by classical pro-inflammatory Th2 cytokines. However, uric acid and interleukin-1β levels in the lung were increased. Epithelial-derived endothelin-1 and fibroblast growth factor were also augmented in smad2-expressing mice. Blocking endothelin-1 prevented these phenotypic changes. CONCLUSIONS: Innate epithelial-derived mediators are sufficient to drive airway hyper-reactivity and remodeling in response to environmental insults in the absence of overt Th2-type inflammation in a model of noneosinophilic, noninflammed types of asthma. Targeting potential asthma therapies to epithelial cell function and modulation of locally released mediators may represent an effective avenue for therapeutic design
    • …
    corecore